
SUPERCHARGE 
YOUR WEB 
APPLICATION
WITH AZURE

#SCYWAWA



Introduction

Rick van den Bosch

@rickvdbosch

www.rickvandenbosch.net

Oscar van Tol

@oscarvantol

oscarvantol.wordpress.com

https://www.twitter.com/rickvdbosch
https://www.rickvandenbosch.net
https://twitter.com/oscarvantol
https://oscarvantol.wordpress.com


Todo list

✓ Introduction

✓ Agenda

❑ Azure Functions, what’s up?
❑ Durable Functions

❑ Azure Functions 2.x (.NET Core)

❑ Azure CDN

❑ Azure Media Services

❑ ASP.NET Core 2.1 SignalR

❑ Azure SignalR Service

❑ Azure Functions + SignalR Service



Azure Functions



Features

• Choice of language

• Pay-per-use pricing model

• Bring your own dependencies

• Integrated security

• Simplified integration

• Flexible development

• Open-source



Limitations

• Default time-out 5 minutes *

• Can be increased to 10 minutes



Azure Functions

{ Demo }



Durable Functions

Enables writing long-running,

stateful function orchestrations

in code in a serverless environment



Behind the scenes

• Built on top of Durable Task Framework

• Maintain State: Event Sourcing

• Functions should be deterministic

• Duration timers: max 7 days

https://github.com/Azure/durabletask


The process

• Await yields control back to dispatcher

• Dispatcher commits actions to storage (execution history)

• Adds messages to a queue to schedule the work

• Orchestrator can be unloaded

• Orchestrator wakes up and re-executes the entire function

• Check execution history for result:
• Result found: replay result

• No result found: do new work (or finish)



The process

• Await yields control back to dispatcher

• Dispatcher commits actions to storage (execution history)

• Adds messages to a queue to schedule the work

• Orchestrator can be unloaded

• Orchestrator wakes up and re-executes the entire function

• Check execution history for result:
• Result found: replay result

• No result found: do new work (or finish)



Patterns

• Function chaining

• Fan-out/fan-in

• Async HTTP APIs

• Monitoring

• Human interaction



Durable Functions



Durable Functions



Azure Functions 2.x

1.x 2.x

Status Generally Available (GA) Preview

Development Portal & Windows Cross platform

Languages (GA) C#, JavaScript, F# -

Languages (experimental) Python, PHP, TypeScript, Batch, Bash, PowerShell -

Languages (preview) - C#, JavaScript, F#, Java

Bindings New binding extensibility model



Azure CDN

The Azure Content Delivery Network



Azure CDN

• Designed to send static files faster and more reliably

• Using servers that are closest to the users

• Dramatically increases speed and availability

• Delivers significant user experience improvements

• Verizon

• Akamai

• Microsoft



Azure CDN Propagation

• It takes time for the registration to propagate
• Microsoft (Standard): usually completes in 10 minutes

• Akamai (Standard): usually completes within one minute

• Verizon (Standard): usually completes within 90 minutes

• Verizon (Premium): usually completes within 90 minutes



Azure CDN

{ Demo }



Test results
Without CDN



Test results
With CDN



ASP.NET Core 2.1 SignalR

`ASP.NET Core SignalR is a library that simplifies adding real-
time web functionality to apps. Real-time web functionality 
enables server-side code to push content to clients instantly.`



ASP.NET Core 2.1 SignalR

• Server to client push: Global, Groups & Individual

• Stream Results via "Channel" Class

• TS/JS & .NET clients

• Integration with ASP.Net core

• Dependency Injection

• Routing

• Auth

• No more jQuery dependency ;)



ASP.NET Core 2.1 SignalR

• Handles connection management automatically.

• Enables broadcasting messages to all connected clients 
simultaneously. For example, a chat room.

• Enables sending messages to specific clients or groups of clients.

• Is open-sourced at 'MS-' GitHub.

https://github.com/aspnet/signalr


ASP.NET Core 2.1 SignalR

• Transport, auto detect
• WebSockets

• Server Send Events

• Long Polling

• Protocols
• Text based on JSON

• Binary based on MessagePack



Azure SignalR Service

`Because SignalR Service is a fully managed service, you can 
roll it out in a multiserver environment without worrying 
about hosting, scalability, load balancing, or authentication.`



Azure SignalR Service



ASP.NET Core 2.1 SignalR
Azure SignalR Service

{ Demo }



ASP.NET Core 2.1 SignalR

ASP.Net Core 2.1 App
1. Create solution

2. services.AddSignalR().AddAzureSignalR();

3. app.UseFileServer(); //for hosting angular in 
wwwroot

4. app.UseAzureSignalR(routes=> { 
routes.MapHub<HubClass:Hub>("/routeToHub"); });

5. Create HubClass: Hub

6. Add Methods to HubClass

Angular app
1. Create app with cli: "ng new appname"

2. npm install @aspnet/signalr

3. let hubConn = 
new HubConnectionBuilder().withUrl("/routeToHub
").build();

4. hubConn.start();

5. hubConn.on("sendmessage", (person: string, 
message: string) => { });

6. hubConn.send("methodInHub", "param1", "p2"…);



Azure SignalR Service - Preview

Current regions: West Europe, Southeast Azia, East US, West US

Dev/Test: Free



Azure SignalR Service + Azure Functions

Supported scenarios
• Allow clients to serverlessly connect to a SignalR Service hub without requiring an ASP.NET Core backend

• Use Azure Functions (any language supported by V2) to broadcast messages to all clients connected to a SignalR Service hub

• Example scenarios include: broadcast messages to a SignalR Service hub on HTTP requests and events from Cosmos DB change feed, Event 
Hub, Event Grid, etc

Current limitations
• Only supports broadcasting at this time, cannot invoke methods on a subset of connections, users, or groups

• Functions cannot be triggered by client invocation of server methods (clients need to call an HTTP endpoint or post messages to an Event 
Grid, etc, to trigger a function)

GitHub: anthonychu/AzureAdvocates.WebJobs.Extensions.SignalRService

https://github.com/anthonychu
https://github.com/anthonychu/AzureAdvocates.WebJobs.Extensions.SignalRService


Azure SignalR Service + Azure Functions

{ Demo }



Azure Media Services



Azure Media Services

• Supports most popular screens and devices

• Automatically chooses the best playback format

• Easily integrates into web and app solutions

• Lets you use familiar JavaScript API development

• Gives you integrated content protection

• Integrates with CDN



Azure Media Services

{ Demo }



TIP

• Kraken.io

• Image Optimizer (VS Tool, Mads Kristensen)

https://kraken.io
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.ImageOptimizer


Resources

• https://github.com/oscarvantol/scywawa

• https://github.com/anthonychu/AzureAdvocates.WebJobs.Extensions.SignalRService

• http://azureinteractives.azurewebsites.net/CloudDesignPatterns/

https://github.com/oscarvantol/scywawa
https://github.com/anthonychu/AzureAdvocates.WebJobs.Extensions.SignalRService
http://azureinteractives.azurewebsites.net/CloudDesignPatterns/

